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1. Introduction

The EPBST Workstation is a set of software tools used to create terrain models and target
paths for use in the Javelin Enhanced Producibility Basic Skills Trainer (EPBST) and other weapons
trainers. The construction of each terrain model requires stitching photographs to create a panoramic image
in the visible spectrum, and creating a corresponding image in the infrared sprectrum registered to the
visible image. A basic step in image registration is solving the image matching problem: given two images
having overlapping fields-of-view, identify pairs of points (x1, y1), (x2, y2) representing the locations of a
common physical feature in the two images. In the early versions of the EPBST workstation software, such
point correspondences could only be identified manually; to identify a point correspondence the user would
view the two images in side-by-side windows, and using the mouse click on position (x1, y1) in the first
window and then position (x2, y2) in the second window. More recent versions of the software have
incorporated automated point matching, to both reduce the work involved and increase the accuracy of
these correspondences. This report focuses on the methodology and software developed during the
performance of this task for automated point matching.

Since the early 1970’s numerous research papers have focused on the image matching problem,
and our work is mostly an implementation of previously published methods. Our approach involves the
following component processes: (1) interest point detection, (2) correlation, (3) consistency checks, and (4)
subpixel refinement by least squares adjustment. The overall approach for the first three of these
processes bears some resemblance to that given by Zhang et. al. [4]. The use of correlation relies on the
assumption that the two photos were taken with similar camera parameters, so that they are at nearly the

same scale, and that any rotation about the line-of-sight is small.




2. Correlation

In this section we introduce correlation in a general mathematical setting, as a measure of vector
similarity. Let u=(a, ay, ..., a,) and v = (by, by, ..., b,) be two vectors of real numbers, each with n
components. Let Sa =X a;, the sum of the n components of u. Similarly let Sb, Sab, Saa, and Sbb denote,
respectively, the sums of the expressions b; , a;b; , aiz and biz. The correlation of u and v may then be
computed as

p(u, v) = (n Sab — Sa Sb) / ((n Saa —(Sa)’ )(n Sbb — (Sb)* ).
We assign p(u, v) the value 0 when the expression in the denominator is 0.
The correlation function has the following properties:

e -1<p(u,v)<1 forallu,v

* p(u,v)= p(v,u)

e p(u, v) = p(cu +d, v) where ¢ is any positive number and d = (d, d, ...,d), a constant vector.
Intuitively, p(u, v) is close to 1 when u, v have similar patterns of increase and decrease; at any point along
their length, they are both increasing or both decreasing. For example,

p((0,1,1,2,2),(2,3,4,4,4) =0.869,
with both vectors are generally increasing throughout, and

p((0,1,3,2,0),(5,8,9,6,3))=0.787,
with both vectors increasing up to their third component and then decreasing. When two vectors have
opposite patterns, one increasing whenever the other is decreasing, their correlation will be close to —1;
when there is no common pattern their correlation will be close to 0.

The examples above illustrate that high correlation depends only on similarity of the numeric
patterns and not on the absolute differences between corresponding components of the vectors; this is also
evident from the third property above. To measure absolute differences, we might use the measure

(& (a —by’m)"”?

which is simply the square root of the average squared difference of corresponding components. We have
found that this measure goes to the other extreme in that any difference in the means of u and v dominates
the measure, overwhelming its ability to pick out whatever similarity in pattern exists. As an attempt at an
intermediate between measuring patterns and absolute differences we have obtained some good results with

8(u, v) = (T (a; — b))*/n — 0.5(Sa/n — Sb/n)?)
which subtracts out half the squared difference of means. If the vector components all lie between 0 and
some maximum value M (for example M = 255 for components representing 8-bit pixel values), then &
satisfies 0 < 8(u, v) < M and we can divide 8 by M to get a measure with maximum value 1, as we have
with p.

So far we have described correlation as applied to one-dimensional vectors of real numbers.
Image correlation is performed by applying the correlation function to two-dimensional pixel

neighborhoods from each of two images. Let f represent an image, with f(x, y) the pixel value at a given




pixel location (X, y). To measure the similarity of image f in the vicinity of pixel (x1, y1) and image g in
the vicinity of (x2, y2), we compute p(u, v), for vectors u and v formed from corresponding pixel values
surrounding (x1, y1) and (x2, y2) respectively. For example, if we use 3 x 3 pixel neighborhoods vectors u
and v will each have 9 components, as follows:
u=~f(x1-1,yl1-1), f(xl,yl -1),...,fx1 +1,yl + 1))
v=(g(xl1-1,yl-1),gxl,yl=1),..,gxt +1,yl +1))
In general, the neighborhoods have size (2k + 1) x (2k + 1), and we denote the correlation between fand g

at a given point pair as p(f, x1, y1, g, x2, y2, k).

3. Interest Point Detection

Interest point detection seeks out candidates points from each of the two images from which the
subsequent steps will search for corresponding pairs. This initial step reduces the computational load, as
well as the chance of errant matches, by limiting the remaining processes to a discrete set of points, chosen
to have good matching characteristics. The principle desirable characteristic of an interest point is its
distinctiveness from neighboring points, which has the effect of making it less likely that the point will
closely match multiple locations in the other image. For example, consider a straight edge between light
and dark regions which appears in both images, such as the edge of a straight road. In general, a point
along that edge is not a good interest point, because it will be well-matched to various points along the
corresponding edge in the other image. On the other hand, a point along the edge where a unique notch or
mark occurs would likely be a good interest point.

Interest point detection begins with an operator which assigns a numerical value to each pixel in
an image, and then proceeds to select pixels from this output as interest points according to some criteria,
typically involving thresholding and nonmaxima suppression. In our implementation, the latter step
involves a “distributed points search” described below. We experimented with three types of interest point
operators, and settled on the third for incorporation into the workstation software:

(1) Autocorrelation: Operators of this type search for points where the image correlates poorly with any
shifted version of itself. One form of this operator, applied to an image f, is
Ix,y)=1-max =15 p(f, %, y, £, X, y3,1)
where (x;, y;), 1 = 1, ..., 8 are the eight pixel locations surrounding pixel (X, y).
(2) Harris Operator: This operator takes the form
I(x, y) = det(A) — 0.04(trace(A))?, where -

( s(gx S(gxgy) )
S(gxgy) S(gy)

and g, and gy are differences of the mput image in the x and y directions, and S is a smoothing operator.
This operator has been widely used since its introduction in the late 1980’s, for example, it was chosen by
Zhang et. al. [4] for the interest point detection stage of their matching algorithm. An operator based on the

same principles was independently developed by Forstner [1].




(3) Minimum Intensity Change: This operator, introduced by Trajkovic and Hedley [3], takes the form
I(x,y) =max ;= i (fx + X, y +y3) = fx, )Y’ + (fx = x5, y = y) = %, y))?),

where the 2k points (x + x;, ¥y + y)), (X — %3, Y — Vi), i = L.k, form a “digital circle” about (x, y). In our

implementation we used k = 6, and (x;, yi) = (2, -1), (2, 0), (2, 1), (1, 2), (0, 2), (-1, 2), as shown below

qa | G5 | s
q3 P1
92 P p2
Qi p3
Ps | Ps | Pa

where p = (X, y), pi = (X +X;, y + yi), and ¢; = (X — X, Y - )

Each of the preceding operators creates a new image from which we select high-valued pixels as
interest points. For our purposes, we would like a set of interest points that are well-distributed throughout
the image, or throughout a rectangular subimage of our choosing. (This subregion could be the region we
expect through initial estimates to be the overlap area with the other image.) To perform the selection, we
first compute a threshold value T such that I(x, y) > T for a specified percentage (e.g. 1%) of the pixels.

We also specify a fixed number of desired interest points in advance, say M, where M is normally
considerably smaller than the percentage of pixels satisfying the threshold, so that the “well-distributed”
criteria may be imposed. To select the final points, we then tile the input image (or subimage) into ann x n
grid of subrectangles (“cells”), where n is the smallest integer such that n” > 4M. The cells are as
uniformly-sized as possible; i.e. if the dimensions of the input image are x x y, then each cell has
dimensions approximately x/n x y/n (but they have boundaries on the integer pixel grid and x or y may not
be evenly divisible by n). Within each cell we find the pixel having the maximum interest operator output,
and if that output exceeds the threshold T, and is a local maximum (no neighboring pixel, in the current cell
or another, has a larger value), then it is included in a list of interest points. The list so constructed is sorted
by interest operator value, and the top M pixels selected. The choice of the threshold T and of the factor 4
in the condition n> > 4M are heuristic. The threshold controls the minimum quality of the interest points

selected. The factor affects how well-distributed the points are.

4. Generating Matches by Correlation

We now discuss the generation of matches; i.e. point pairs (x1, y1), (x2, y2), where (x1,yl) is a
pixel location in the first image f, and (x2, y2) the corresponding location in the second image g. A central
function in the process, called CorrSearch in the code, takes as input a point (x1, y1), and searches through
a specified rectangle in the second image for a point (x2, y2) which maximizes p(f, x1, y1, g, x2, y2, k).
The search is restricted to those points (x2, y2) with interest operator value satisfying a given threshold T.
This restriction significantly speeds up the computation, by limiting the number of pixels (x2, y2) for which
p must be computed. Recall that k determines the size of the pixel neighborhoods used in the computation

of p. In our implementation we use three successively larger values of k (k =3, 6, 9) in evaluating p,



dropping (x2, y2) as a candidate match for (x1, y1) if any of these values of p are below a threshold. This
scheme also aids performance. Also we have found that replacing p by & (see section 2) in at least one of
these evaluations can help eliminate spurious matches (but have not done a systematic study to test this).

Using the processes described so far, we may build a list of candidate matches as follows. Create
a list of interest points in the first image f. Apply the interest operator to the second image g, and compute
an interest operator threshold T for g, but do not select interest points. Loop through the interest points of
f; for each such point (x1, y1), apply CorrSearch to the whole image g to find the best match (x2, y2) if one
exists meeting the criteria described above. If so, store the match (x1, y1, x2, y2) together with its final
correlation (or similarity) value (p or 8). Finally select the M matches with the highest similarity values,
where M is the desired number of matches.

The process just described includes searching the whole image g for each (x2, y2), which is
computationally expensive. If additional information is available, such as an approximate 2d
transformation from pixel coordinates of f to pixe! coordinates of g, then the search for (x2, y2) can be
limited to a region about the point where we expect to find it. This additional information can come from
previously determined matches, which might have been supplied manually, or by a previous iteration of the
search in which a small number of initial matches were generated. For large images the initial search may

be performed using reduced resolution versions of the images.

5. Consistency Checks

We now describe methods for choosing, from the list of candidate matches created as in the
previous section, a small number of best matches, based on their consistency with one another and support
from other matches in the list. Our measures of consistency and support are based on the geometrical
relationships among the points.

In the case where the two photos were taken from the same location (the rotational case) with the
same camera parameters, the transformation from pixel coordinates to pixel coordinates is a 2d projective
transformation:

X, y) = ((@nx +apy +ap)/w, (anX +any + ax)/w),

W =ag X +aspy+1.

In the case of two viewing locations (the stereo case), there is no single transformation as in the rotational
case, only an epipolar constraint. However, any coplanar set of points are transformed from one image to
the other under a common 2d projective transformation. (Here of course the coplanarity refers to the
object points corresponding to the matched image points.) In finding initial matches in the stereo case, we
assume that at least some four matches are coplanar, with a significant portion of the other matches
approximately in the same plane as well. Given four matches, the coefficients a;; may be determined by
solving a linear system of 8 equations in 8 unknowns. When just three matches are given, the projective

coefficients a3, as, may be taken to be zero and an affine transformation determined:




(X, y’) = (@ux + apy +as, ayX +aypy +az)
With just two matches, a transformation consisting of a rotation, scale, and translation may be determined:
(&, y7)=r(cx - sy, sx+cy) + (to ty),
where ¢ = cos(0),s = sin(0).
Our consistency check for a given pair or triplet of matches is that the transformation determined from
them be close to a simple translation. In the case of a pair, this is determined by checking that the rotation
is small and the scale close to one. In the case of a triplet, for which some pair has already been found
consistent, it is checked by verifying that the 2 x 2 determinant d = a; a5, - a;, a5, (which may be regarded
as the “scale” of the affine transformation) is close to one.

Given a transformation determined from a subset of the matches as above, we measure the support
of another match (x1, y1, x2, y2) by how close (x2, y2) is to the image of (x1, y1) under the transformation.
The smaller the distance

dist((x2, y2), (x1”, y1)) = (x2 = x1’)* + (y2 - yI"))"?
the better the support. For an overall measure of support for the given subset, we add these distances.
However, because we do not want the measure to be corrupted by the nonsupport of false matches, we
include only the smallest ng such distances in the sum, where ny is the half the number of remaining
matches.

These checks and support measures may be used to find the two “best” matches among an initial
list of candidate matches as follows. We first remove from the list any match which is inconsistent with all
other matches. From the remaining list, we examine all consistent pairs and choose the one with the
highest measure of support from the others. To obtain a set of four “best” matches from an initial candidate
list, we first select the best two in the manner just described. We then loop through the remaining matches,
examining each possible pair of third and fourth matches which are each consistent with the initial two as a
triplet. Among such foursomes we take the one with the highest measure of support from the others, as

before.

6. Subpixel Refinement by Least Squares Adjustment

The correlation-based methods in section 4 provide integer pixel coordinates for the matches. To further
refine the match, we use least squares adjustment to estimate the local transformation from one image to
the other. Methods similar to our formulation were reported in various papers during the 1980’s, such as
Griin [2]. We seek parameters a, a;, ..., 2; Which minimize the function
F = ay + a;g(u,v) — f(x,y), where

u=a;+ax t+agy

V=as;tagX+ayy
in a region of pixels (x, y) near (x1, y1). For this region we use an 11 x 11 square window centered at (x1,

y1). The parameters a, and a; model radiosity differences between f and g (in the vicinity of the match),




and the other six parameters define a 2d affine transformation between the pixel coordinates. In evaluating
F we may restrict (X, y) to the integer pixel of grid of f, but we must compute g(u, v) at nongrid points (u,
v). In our formulation we extend g by bilinear interpolation. Let u, = the greatest integer < u, v, = the
greatest integer < v, u; =up + 1, and v; = vq + 1, so that (uo, vo), (u, Vo), (o, vy), and (u,, v,) are the grid
points about (u, v). Then the interpolated value of g is given by

g(u, v) = (u —uo) (v — Vo) g(uy, v1) + (w ) (v — Vo) g(uo, V1)

+ (u—up) (vi — V) g(uy, Vo) + (u; —u) (vi — V) g(Uo, Vo)

Inserting this equation into that for F, the partial derivatives of F with respect to the parameters a;may then
easily be derived, and inserted into an iterative least squares procedure. This adjustment treats each pixel in
the 11 x 11 window as an observation, and determines optimal values of the parameters ay, ay, ..., a;. The
values of ay, as, ..., a; together with (x1, y1) are then substituted in the equations for u and v above to

compute the refined location of (x2, y2).
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